
Radeon Developer Panel
Documentation

Release 2.8.1

AMD Developer Tools

Mar 02, 2023

Contents

1 Graphics APIs, RDNA and GCN hardware, and operating systems 3

2 Compute APIs, RDNA and GCN hardware, and operating systems 5

3 Initial setup 7

4 Remote connections 11

5 System 13
5.1 My applications . 14
5.2 My workflows . 17
5.3 Blocked applications . 21
5.4 System information . 22

6 How to profile your application 25

7 Settings 29

8 How to memory trace your application 31

9 How to capture a raytracing scene from your application 35

10 Using the Clock settings 39

11 Connection Log 41

12 The Radeon Developer Service 43
12.1 Radeon Developer Service for desktop developer system . 43
12.2 Radeon Developer Service for headless GPU systems . 44

13 Bug Report 45

14 Known Issues 47
14.1 Cleanup After a RadeonDeveloperServiceCLI Crash . 47
14.2 Windows Firewall Blocking Incoming Connections . 47
14.3 Disabling Linux Firewall . 50
14.4 Setting GPU clock modes on Linux . 50
14.5 Enabling support for RMV tracing on Linux . 50

i

14.6 Radeon Developer Panel connection issues on Linux . 50
14.7 Missing Timing Data for DirectX 12 Applications . 50
14.8 Radeon Developer Service Port numbers . 54
14.9 Problems caused by existing installation of RADV Linux Vulkan driver 54
14.10 Problems caused by the presence of non-AMD GPUs and non-AMD CPUs with integrated graphics . 54

ii

Radeon Developer Panel Documentation, Release 2.8.1

The Radeon Developer Panel is part of a suite of tools that can be used by developers to optimize DirectX® 12,
Vulkan® and OpenCL™ applications for AMD RDNA™ and GCN hardware. The suite is comprised of the following
software:

• Radeon Developer Mode Driver – This is shipped as part of the AMD public driver and supports the developer
mode features required for profiling and debugging.

• Radeon Developer Service (RDS) – A system tray application that unlocks the Developer Mode Driver features
and supports communications with high level tools.

• Radeon Developer Service - CLI (Headless RDS) – A console (i.e. non-GUI) application that unlocks the
Developer Mode Driver features and supports communication with high level tools.

• Radeon Developer Panel (RDP) – A GUI application that allows the developer to configure driver settings and
generate profiles from DirectX12, Vulkan and OpenCL applications.

• Radeon GPU Profiler (RGP) – A GUI tool used to visualize and analyze the profile data.

• Radeon Memory Visualizer (RMV) - A GUI tool used to visualize and analyze the memory trace data.

• Radeon Raytracing Analyzer (RRA) - A GUI tool used to visualize and analyze the raytracing data.

This document describes how the Radeon Developer Panel can be used to capture a profile, memory trace or a
raytracing scene for an application on AMD RDNA and GCN graphics hardware. The Radeon Developer Panel
connects to the Radeon Developer Service in order to collect a profile, trace or scene.

RGP documentation: https://radeon-gpuprofiler.readthedocs.io/en/latest/

RMV documentation: https://radeon-memory-visualizer.readthedocs.io/en/latest/

RRA documentation: https://radeon-raytracing-analyzer.readthedocs.io/en/latest/

Note: By default, the driver allocates a maximum of 75 MB video memory per Shader Engine to capture
RGP profiles. The driver allocates 300 MB video memory for the single shader engine with instruction tracing
enabled. As of v2.6 this can now be configured in the workflow settings.

Contents 1

https://radeon-gpuprofiler.readthedocs.io/en/latest/
https://radeon-memory-visualizer.readthedocs.io/en/latest/
https://radeon-raytracing-analyzer.readthedocs.io/en/latest/

Radeon Developer Panel Documentation, Release 2.8.1

2 Contents

CHAPTER 1

Graphics APIs, RDNA and GCN hardware, and operating systems

Supported APIs

• DirectX12

• Vulkan

Supported RDNA and GCN hardware

• AMD Radeon RX 7000 series

• AMD Radeon RX 6000 series

• AMD Radeon RX 5000 series

• AMD Radeon VII

• AMD RX Vega 64 and RX Vega 56

• AMD Ryzen™ Processors with Radeon Vega Graphics

• AMD Radeon R9 Fury and Nano series

• AMD Radeon RX 400 and RX 500 series

• AMD Tonga R9 285, R9 380

Supported Operating Systems

• Windows® 10

• Windows® 11

• Ubuntu 22.04 LTS (Vulkan only)

3

Radeon Developer Panel Documentation, Release 2.8.1

4 Chapter 1. Graphics APIs, RDNA and GCN hardware, and operating systems

CHAPTER 2

Compute APIs, RDNA and GCN hardware, and operating systems

Supported APIs

• OpenCL

• HIP

Supported RDNA and GCN hardware

• AMD Radeon RX 7000 series

• AMD Radeon RX 6000 series

• AMD Radeon RX 5000 series

• AMD Radeon VII

• AMD RX Vega 64 and RX Vega 56

• AMD Ryzen Processors with Radeon Vega Graphics

Supported Operating Systems

• Windows® 10

• Windows® 11

5

Radeon Developer Panel Documentation, Release 2.8.1

6 Chapter 2. Compute APIs, RDNA and GCN hardware, and operating systems

CHAPTER 3

Initial setup

IMPORTANT: The application you want to profile, trace or capture scenes from must NOT already be running. The
panel needs to be configured in advance of starting your application.

1) Start the RadeonDeveloperPanel(.exe) on your local system. The panel will startup up with the Connection tab
already highlighted (see below).

7

Radeon Developer Panel Documentation, Release 2.8.1

The connection panel has three main elements:

• Connection status – to the Radeon Developer Service (currently not connected)

• Connection dropdown - choose a previous connection to connect to. Local will always be available in this list

• New connection – section that allows you specify a new remote connection. New connections will be added to
the connections list

2) Connect to a Local or Remote connection:

Select an entry from the Connection dropdown, then click the “Connect” button. This will attempt to
establish a connection to a Radeon Developer Service

Note that the red indicator to the left of the “CONNECTION” tab will change to green to indicate that the connection
was successful.

Connections to applications will timeout after a brief period of no API calls being made. For example, a timeout will
likely occur when a connected application is suspended by a debug breakpoint or if the application is only occasionally
refreshing. Enabling the “Disable client timeout” toggle will stop Radeon Developer Panel disconnecting from inactive
clients.

NOTE For Local connections, starting Radeon Developer Service is optional. For Remote Connections, a Radeon

8 Chapter 3. Initial setup

Radeon Developer Panel Documentation, Release 2.8.1

Developer Service instance must be started on the remote machine (see below)

9

Radeon Developer Panel Documentation, Release 2.8.1

10 Chapter 3. Initial setup

CHAPTER 4

Remote connections

1) Start the RadeonDeveloperService(.exe) on the remote system (the machine where the application is to be run).
Make a note of the remote system’s IP address (open a command prompt and type ‘ipconfig’).

2) Start the RadeonDeveloperPanel(.exe) on the local system. On the CONNECTION tab, enter the IP address of
the remote system in the Host name and then click the “Connect” button.

Optionally a nickname for the connection can be provided. This name will show in parentheses in the Connection
dropdown.

11

Radeon Developer Panel Documentation, Release 2.8.1

12 Chapter 4. Remote connections

CHAPTER 5

System

After a connection is made to the service, the panel will switch to the System tab.

13

Radeon Developer Panel Documentation, Release 2.8.1

The system tab contains various panels for configuration:

• My applications - List of applications enabled for driver connection

• My workflows - List of workflows defining pre-launch configuration settings

• Blocked applications- List of applications blocked from driver connection

• Modules - List of modules and their version numbers for the current connection

• System information - Lists detailed hardware and system information for the active Radeon Developer Panel
connection

5.1 My applications

The My applications pane in Radeon Developer Panel contains the list of applications the user will want to connect
with to capture a profile, trace or scene from.

There are two modes of connection available.

• Basic Mode - Any application run (not already in blocked applications list) will connect

14 Chapter 5. System

Radeon Developer Panel Documentation, Release 2.8.1

• Advanced Mode - Only applications with entries specified in the application list will connect

These modes can be toggled using the Advanced Mode toggle at the top of the pane.

Advanced Mode toggled off is Basic Mode

Application entries can be added to the list using Advanced Mode as follows:

• Enter the executable name into the input field, or click the file icon at the end of the input field to select the
executable using a file browser.

• Specify the workflow to be used for pre-launch configuration by this entry using the Workflow dropdown.

• Specify the API type to check against for this application from the dropdown.

IMPORTANT Applications launched while using Basic Mode will automatically attempt a connection and (if an
entry does not already exist in table) have an entry created in the table using the current workflow selected in
the Workflow dropdown. If an entry existed for the application, then the global workflow chosen in the Basic
Mode will override it. A proper warning message is shown in the status column in this view.

IMPORTANT The API specified works as a filter against the client application accepting the driver connection. If
you are unsure of what API is being used or don’t care use the default Auto

Once an application is added to the list, it can then be run on the system to start a driver connection.

When a connection to the client application has been established, the panel will then switch to the Applications tab.

When in Basic Mode, the global workflow can also be changed in the Applications tab. The dropdown on this tab is
synced with the one in the My applications pane.

5.1. My applications 15

Radeon Developer Panel Documentation, Release 2.8.1

In Advanced Mode, the workflow for a specific application can also be changed by selecting it in the Applications tab
and changing the Workflow dropdown. Any changes made to this dropdown will be reflected in the My applications
pane.

16 Chapter 5. System

Radeon Developer Panel Documentation, Release 2.8.1

5.2 My workflows

The My workflows pane in Radeon Developer Panel allows the user to specify a set of enabled features and pre-launch
configuration options to be used when connecting an application.

Defining a workflow to contain these pre-launch settings such as the profile/trace/scene output path or capture mode
allows for re-use of the settings across multiple applications.

5.2. My workflows 17

Radeon Developer Panel Documentation, Release 2.8.1

Each workflow contains a list of features such as Profiling, MemoryTrace, Raytracing, or DeviceClocks which can
be enabled or disabled

There are also configuration options available for these features:

Profiling Configuration

The following are the configurable options for profiling

• Output Path:

– Defines the output path for saving captured profiles

– Use the macro $(APP_NAME) to insert the connected application’s name into path

• SQTT Buffer Size:

– Defines the size of the buffer where SQTT data will be stored

– If a profile has missing data, the SQTT buffer size can be increased to potentially remedy the issue

– If an application experiences graphical corruption, decreasing the SQTT buffer size can potentially
remedy the issue

• Vulkan/DirectX12:

18 Chapter 5. System

Radeon Developer Panel Documentation, Release 2.8.1

– Displays information about the active trigger mode for profile capture

• OpenCL:

– Displays configuration options for the trigger mode and dispatch range for profile capture

– Enable auto capture checkbox can enable/disable automatic capture for OpenCL

– Dispatch Range allows for setting the start and stop dispatch indices to use during automatic profile
capture

– Dispatch count and capture time specifies the number of dispatches to capture after a specified elapsed
time

NOTE To reduce the chance of truncated profile data, OpenCL profiling is limited to 10000 dispatches

5.2. My workflows 19

Radeon Developer Panel Documentation, Release 2.8.1

Memory Trace Configuration

The following are the configurable options for memory trace

• Output Path:

– Defines the output path for saving captured traces

– Use the macro $(APP_NAME) to insert the connected application’s name into path

Raytracing Trace Configuration

20 Chapter 5. System

Radeon Developer Panel Documentation, Release 2.8.1

The following are the configurable options for raytracing

• Output Path:

– Defines the output path for saving captured raytracing scenes

– Use the macro $(APP_NAME) to insert the connected application’s name into path

5.3 Blocked applications

Sometimes it is useful to completely exclude certain background applications from being recognized and displayed
in the Radeon Developer Panel. For example, Windows 10 has applications that use DirectX 12 and when they are
started can show up in the list of target applications. The Profiling feature also requires that only one application is
started while using the feature so blocking applications, such as launchers that run before another application starts,
can be useful.

The panel maintains a list of default applications that are blocked on either Windows or Linux. This list can be viewed
from the Blocked applications subtab on the System tab which will appear once a local or remote connection has
been established. Applications can be added or removed from the list by clicking one of the buttons below the list
of process names. When editing or removing entries, first select the process name from the list then click the edit or
remove button. The list can also be restored to the default set of blocked applications. Right clicking on a process
name in the list will display context menu options to add, remove, or edit.

The blocked applications list supports wildcard matching. The following syntax is supported:

• ? : Matches exactly one of any character

• [. . .] : Matches one character in a set of characters

• * : Matches zero or more of any character

These can be escaped by using backslash.

Here are some examples of blocked application items that leverage the wildcard matching:

5.3. Blocked applications 21

Radeon Developer Panel Documentation, Release 2.8.1

• [Gg]ears.exe : Blocks any application called gears.exe with either a lowercase or uppercase G

• gpu_info* : Blocks any applications who’s name starts with gpu_info

• test?.exe : Blocks any application called test with a single character suffix – e.g. test1 or test6

5.4 System information

The system information pane lists detailed hardware and system information for the active Radeon Developer Panel
connection.

Pressing the Export button will open a dialog to choose a folder. Upon selecting a folder, the system information will
be exported to that folder as a JSON file.

22 Chapter 5. System

Radeon Developer Panel Documentation, Release 2.8.1

5.4. System information 23

Radeon Developer Panel Documentation, Release 2.8.1

24 Chapter 5. System

CHAPTER 6

How to profile your application

Upon running an application successfully the panel will have switched to the Applications tab shown here:

25

Radeon Developer Panel Documentation, Release 2.8.1

The profiling UI has the following elements:

• Capture profile - Captures a profile and writes to disk

• Enable instruction tracing - Enables capturing detailed instruction data

• Collect counters - Enables capturing GPU cache counter data. Systems with an AMD Radeon RX 6000 or
AMD Radeon RX 7000 series GPU will also collect raytracing counter data.

• Delay capture - If this is enabled, pressing the capture profile button or triggering the hotkey will first wait the
entered number of milliseconds before capturing a profile.

• Recently collected profiles - Displays any recently collected profiles found in the output directory

Capturing a profile can be achieved by the following:

• Click the Capture profile button

Clicking the Capture profile button from the Profiling UI will capture a frame and write the results
to disk.

• Use the Ctrl-Alt-C hotkey

26 Chapter 6. How to profile your application

Radeon Developer Panel Documentation, Release 2.8.1

Using Ctrl-Alt-C default hotkey on Windows or Linux® will capture a frame and write the results to
disk.

This can be configured before launching an application by clicking the edit button to the right of
the hotkey label and then entering a series of key presses.

Example output:

sample-20200908-092653.rgp

NOTE The profile output directory is specified as part of the associated workflow with this application entry in the
My applications list

27

Radeon Developer Panel Documentation, Release 2.8.1

28 Chapter 6. How to profile your application

CHAPTER 7

Settings

At any time the Radeon Developer Panel settings can be accessed by clicking the gear button in the upper right corner.
This will open the settings pane.

After capturing a profile, trace or scene from an application, it is often desirable to open the output file using the
associated tool such as Radeon GPU Profiler, Radeon Memory Visualizer or Radeon Raytracing Analyzer.

The settings pane allows for choosing the global path to the tool to be used by Radeon Developer Panel to open
captured profiles, traces and scenes.

Additionally, the settings pane contains the Auto open traces toggle which will cause Radeon Developer Panel to open
a captured profile, trace or scene with the correct tool as soon as it is captured.

A Restore Defaults button allows for resetting the path and auto open settings to their default values. For the paths,
this will reset them to the panel’s executable path directory.

29

Radeon Developer Panel Documentation, Release 2.8.1

30 Chapter 7. Settings

CHAPTER 8

How to memory trace your application

Upon running an application successfully the panel will have switched to the Applications tab shown here:

31

Radeon Developer Panel Documentation, Release 2.8.1

NOTE Memory tracing will have been implicitly started when the application was launched.

The memory trace UI has the following elements:

• Dump trace – stops memory tracing and writes results to disk

• Insert snapshot - insert user specified identifier to define snapshot in trace. A snapshot captures a moment in
time in much the same way as a photograph. For example, to spot memory leaks, 2 snapshots can be added;
one just before a game level is started after the menu screens and another snapshot when the game level finishes
once the user is back in the game menus. Theoretically, the game should be in the same state in both cases (in
the menus before and after a game level).

• Recently collected traces – displays any recently collected traces in output directory

Writing out the memory trace to file can be achieved by one of the following:

• Close the running application

When the client application terminates, the memory tracing will stop and the results will be written
to disk.

• Click the Dump trace button

32 Chapter 8. How to memory trace your application

Radeon Developer Panel Documentation, Release 2.8.1

Clicking the Dump trace button from the Memory Trace UI will stop memory tracing and write the
results to disk.

Using either of the above methods to complete memory tracing will result in a Radeon Memory Visualizer trace file
being written to disk.

Example output:

sample_20200316-143712.rmv

NOTE The trace output directory is specified as part of the associated workflow with this application entry in the My
applications list

IMPORTANT: Once a memory trace has finished either through closing the application or through clicking the
Dump trace button. The application MUST be closed and re-launched to start a new memory trace.

33

Radeon Developer Panel Documentation, Release 2.8.1

34 Chapter 8. How to memory trace your application

CHAPTER 9

How to capture a raytracing scene from your application

Upon running an application successfully the panel will have switched to the Applications tab shown here:

35

Radeon Developer Panel Documentation, Release 2.8.1

The raytracing UI has the following elements:

• Capture scene - Captures a scene and writes to disk

• Delay capture - If this is enabled, pressing the capture scene button or triggering the hotkey will first wait the
entered number of milliseconds before capturing.

• Recently collected scenes - Displays any recently collected scenes found in the output directory

Capturing a scene can be achieved by the following:

• Click the Capture scene button

Clicking the Capture scene button from the Raytracing UI will capture a raytracing scene and write
the results to disk.

• Use the Ctrl-F8 hotkey

Using Ctrl-F8 default hotkey on Windows or Linux® will capture a raytracing scene and write the
results to disk.

This can be configured before launching an application by clicking the edit button to the right of

36 Chapter 9. How to capture a raytracing scene from your application

Radeon Developer Panel Documentation, Release 2.8.1

the hotkey label and then entering a series of key presses.

Example output:

sample-20220705-104021.rra

NOTE The scene output directory is specified as part of the associated workflow with this application entry in the
My applications list

37

Radeon Developer Panel Documentation, Release 2.8.1

38 Chapter 9. How to capture a raytracing scene from your application

CHAPTER 10

Using the Clock settings

The Radeon Developer Panel (RDP) allows the developer to select from a number of clock modes.

39

Radeon Developer Panel Documentation, Release 2.8.1

Normal clock mode will run the GPU as it would normally run your application. To ensure that the GPU runs within
its designed power and temperature envelopes, it dynamically adjusts the internal clock frequency. This means that
profiles taken of the same application may differ significantly, making side-by-side comparisons impossible.

Stable clock mode will run the GPU at a lower, fixed clock rate. Even though the application may run slower than
normal, it will be much easier to compare profiles of the same application.

When capturing a profile, the clock settings here are not used since the driver forces a profile to take place using peak
clocks.

NOTE A running, connected application is required in order to change the GPU clock modes

40 Chapter 10. Using the Clock settings

CHAPTER 11

Connection Log

Use the keyboard shortcut Ctrl-L to bring up the connection log. Additional information about the connection and any
errors encountered by Radeon Developer Panel and the Radeon Developer Service are displayed here. Connection log
messages are logged by thread and the log view only displays one thread’s log messages at a time. Log messages from
other threads can be viewed using the source dropdown. Below is an example of typical output from a session that
captured a profile.

41

Radeon Developer Panel Documentation, Release 2.8.1

This log is also saved in a log file located at:
“C:\Users\your_name\AppData\Roaming\RadeonDeveloperPanel\log.txt”

On Linux, this log is located at:
“~/.local/share/RadeonDeveloperPanel/log.txt”

42 Chapter 11. Connection Log

CHAPTER 12

The Radeon Developer Service

Two versions of the Radeon developer service are provided, one with a configuration UI and system tray icon, and one
designed for use with headless GPU system where no UI can be supported.

12.1 Radeon Developer Service for desktop developer system

RadeonDeveloperService(.exe) – Can be used for general use where the system has a monitor and UI (e.g. desktop
development machines). The Radeon Developer Service includes a configuration window containing basic service
configuration settings and software info. Double click the Radeon Developer Service system tray icon to open the
configuration window, or right-click on the system tray icon and select ‘configure’ from the context menu.

• Listen port – The port that the Radeon Developer Service uses to listen for incoming connections from a remote
Radeon Developer Panel. The default port is 27300. Altering the port will disconnect all existing sessions.
The circular arrows icon to the right of the Listen port field can be clicked to reset the port to the default value.

• Version info – Software version information for the Radeon Developer Service.

Double click the Radeon Developer Service system tray icon again or right-click on the system tray icon and select
‘configure’ from the context menu to close the configuration window.

Please note that when running both the Radeon Developer Panel and the Radeon Developer Service on the same
system the communication between the two uses pipes, not sockets and ports, so setting the port has no effect.

43

Radeon Developer Panel Documentation, Release 2.8.1

12.2 Radeon Developer Service for headless GPU systems

RadeonDeveloperServiceCLI(.exe) – Command line version for use with headless GPU systems where no UI can be
provided. NOTE: This version can also run on a system that has a monitor and UI.

The following command line options are available for RadeonDeveloperServiceCLI:

1) – port <port number> Overrides the default listener port used by the service (27300 is the default).

Please note that the service will need to be explicitly started before starting the Radeon Developer Panel. If the service
isn’t running, the Radeon Developer Panel will automatically start the UI version of the Radeon Developer Service,
which may not be what is required.

44 Chapter 12. The Radeon Developer Service

CHAPTER 13

Bug Report

At any time, a bug report template can be generated by clicking the bug button in the upper right corner. This will
copy a template to your clipboard with relevant information such as the graphics cards and operating system of the
connected system.

When reporting bugs, please use the generated template and fill in the description and proper steps to reproduce the
issue marked by the “(fill me in)” sections.

45

Radeon Developer Panel Documentation, Release 2.8.1

46 Chapter 13. Bug Report

CHAPTER 14

Known Issues

14.1 Cleanup After a RadeonDeveloperServiceCLI Crash

If the RadeonDeveloperServiceCLI executable crashes on Linux, shared memory may need to be cleaned up by run-
ning the remove_shared_memory.sh script located in the script folder of the RGP release kit. Run the script with
elevated privileges using sudo. If this fails to work, try starting the panel with elevated privileges.

14.2 Windows Firewall Blocking Incoming Connections

1) Deleting the settings file. If problems arise with connection or application histo-
ries, these can be resolved by deleting the Radeon Developer Panel’s settings file at:
“C:\Users\your_name\AppData\Roaming\RadeonDeveloperPanel\settings.ini”

on Windows. On Linux, the corresponding file is located at:

“~/.local/share/RadeonDeveloperPanel/settings.ini”

2) “Connection Failure” error message. This issue is sometimes seen when running the panel for the very first
time. The panel tries to start the service automatically for local connections and this can fail. If you see this
message try manually starting the “RadeonDeveloperService(.exe)” and connect again.

3) Remote connection attempts timing out. When running the Radeon Developer Service on Windows, the
Windows Firewall may attempt to block incoming connection attempts from other machines. The best methods
of ensuring that remote connections are established correctly are:

a. Allow the RDS firewall exception to be created within the Windows Firewall when RDS is first started.
Within the Windows Security Alert popup, enable the checkboxes that apply for your network configura-
tion, and click “Allow access”.

47

Radeon Developer Panel Documentation, Release 2.8.1

a. If “Cancel” was previously clicked in the above step during the first run, the exception for RDS can still be
enabled by allowing it within the Windows Control Panel firewall settings. Navigate to the “Allow an app or
feature” section, and ensure that the checkbox next to the RadeonDeveloperService(.exe) entry is checked:

48 Chapter 14. Known Issues

Radeon Developer Panel Documentation, Release 2.8.1

14.2. Windows Firewall Blocking Incoming Connections 49

Radeon Developer Panel Documentation, Release 2.8.1

a. Alternatively, disable the Windows Firewall entirely will also allow RDS to be connected to.

NOTE The Windows firewall alert in no way indicates that the Radeon Developer tools are trying to commu-
nicate to an AMD server over the internet. The Radeon Developer tools do not attempt to connect to a remote
AMD server of any description and do not send personal or system information over remote connections. The
Radeon Developer Panel needs to communicate with the Radeon Developer Service, which may or may not be
on the same machine, and a connection needs to be made between the two (normally via a socket).

14.3 Disabling Linux Firewall

If the remote machine is running Linux and the “Connection Failure” error message is displayed, the Linux firewall
may need to be disabled. This is done by typing “sudo ufw disable” in a terminal. The firewall can be re-enabled after
capturing by typing “sudo ufw enable”.

14.4 Setting GPU clock modes on Linux

Adjusting the GPU clock mode on Linux is accomplished by writing to
/sys/class/drm/card<n>/device/power_dpm_force_performance_level, where <n> is the index of the card in
question. By default this file is only modifiable by root, so the application being profiled would have to be run as root
in order for it to modify the clock mode. It is possible to modify the permissions for the file instead so that it can be
written by unprivileged users. The Radeon GPU Profiler package includes the “scripts/setup.sh” script which when
run as root will set the GPU clock mode. Execute this script before running the Radeon Developer Service and
target application, and the GPU clock mode will be updated correctly at runtime.

NOTE This script needs to be run each time you reboot your machine; the file permissions do not survive system
reboots.

14.5 Enabling support for RMV tracing on Linux

RMV tracing on Linux requires specific kernel tracing features to be enabled. The scripts/setup.sh script file when
run as root will setup the necessary kernel tracing components to support RMV capture. Please run this script prior to
launching Radeon Developer Service or Radeon Developer Panel.

14.6 Radeon Developer Panel connection issues on Linux

The Radeon Developer Panel may fail to start the Radeon Developer Service when the Connect button is clicked. If
this occurs, manually start the Radeon Developer Service, select localhost from the Recent connections list and click
the Connect button again.

14.7 Missing Timing Data for DirectX 12 Applications

To collect complete profile datasets for DirectX 12 applications, two additional actions must be performed:

1) The user account in Windows needs to be associated with the “Performance Log Users” group.

2) The following REG_DWORD registry key must be set: HKEY_LOCAL_MACHINE\Software\AMD\RadeonTools\RgpEnableEtw=1

50 Chapter 14. Known Issues

Radeon Developer Panel Documentation, Release 2.8.1

If these two privileges aren’t configured properly, profiles collected under the user’s account may not include all timing
data for GPU Sync objects.

A batch file is provided to perform the above two actions (scripts\AddUserToGroup.bat). The batch file should be run
as administrator (Right click on file and select “Run as Administrator”). The script’s output is shown below:

The actions performed by the batch fie can be undone by running the batch file with a –cleanup command line switch.

Alternatively, to manually add the active user to the proper group, follow these steps:

1) Open the Run dialog by using the Windows Start menu, or through the Windows + R shortcut.

a. Type “lusrmgr.msc” into the Run window, and click OK.

2) Within the “Local Users and Groups” configuration window that opens, select the Groups node.

14.7. Missing Timing Data for DirectX 12 Applications 51

Radeon Developer Panel Documentation, Release 2.8.1

a. Select the Performance Log Users entry. Right-click and select Properties.

1) To add the active user to the group, click the Add. . . button. (If the active user appears within this list, the
account is already configured properly.)

52 Chapter 14. Known Issues

Radeon Developer Panel Documentation, Release 2.8.1

2) Type the active user’s account name into the Select Users, Computers, Service Accounts, or Groups dialog,
and click OK.

3) When the user has been added to the group, restart the machine and log back in. RDS should now be configured
to collect full timing information for DirectX 12 applications.

14.7. Missing Timing Data for DirectX 12 Applications 53

Radeon Developer Panel Documentation, Release 2.8.1

14.8 Radeon Developer Service Port numbers

Please note that when running both the Radeon Developer Panel and the Radeon Developer Service on the same system
the communication between the two uses pipes, not sockets and ports, so setting the port has no effect. In this scenario,
it is possible to set the service to listen on a non-default port. Leave the panel on the default port, and connecting will
work fine.

14.9 Problems caused by existing installation of RADV Linux Vulkan
driver

Installations of Ubuntu 20.04 or newer may have the RADV open source Vulkan driver installed by default on the
system. As a result, after an amdgpu-pro driver install, the default Vulkan ICD may be the RADV ICD.

In order to capture a profile, Vulkan applications must be using the amdgpu-pro Vulkan ICD. The default Vulkan
ICD can be overridden by setting the following environment variable before launching a Vulkan application:
VK_ICD_FILENAMES=/etc/vulkan/icd.d/amd_icd64.json

14.10 Problems caused by the presence of non-AMD GPUs and non-
AMD CPUs with integrated graphics

The presence of non-AMD GPU’s and CPU’s on your system can cause the failure to generate a profile or apps to not
run at all.

These problems typically occur with Vulkan apps in systems that have:

1) A non-AMD CPU with in integrated non-AMD GPU

2) A non-AMD discrete GPU

Vulkan applications, by default, use GPU 0 which usually maps to the integrated GPU, or in some cases, the non-AMD
discrete GPU. In both cases Vulkan apps will either fail to run, or RGP profiling will not work (no RGP overlay will
be present in these cases).

To avoid these issues:

1) Disable any non-AMD integrated GPU’s in the device manager

2) Disable any non-AMD discrete GPU’s in the device manager, and/or physically remove from the system.

54 Chapter 14. Known Issues

	Graphics APIs, RDNA and GCN hardware, and operating systems
	Compute APIs, RDNA and GCN hardware, and operating systems
	Initial setup
	Remote connections
	System
	My applications
	My workflows
	Blocked applications
	System information

	How to profile your application
	Settings
	How to memory trace your application
	How to capture a raytracing scene from your application
	Using the Clock settings
	Connection Log
	The Radeon Developer Service
	Radeon Developer Service for desktop developer system
	Radeon Developer Service for headless GPU systems

	Bug Report
	Known Issues
	Cleanup After a RadeonDeveloperServiceCLI Crash
	Windows Firewall Blocking Incoming Connections
	Disabling Linux Firewall
	Setting GPU clock modes on Linux
	Enabling support for RMV tracing on Linux
	Radeon Developer Panel connection issues on Linux
	Missing Timing Data for DirectX 12 Applications
	Radeon Developer Service Port numbers
	Problems caused by existing installation of RADV Linux Vulkan driver
	Problems caused by the presence of non-AMD GPUs and non-AMD CPUs with integrated graphics

